Continuous-time Marker Chains.

We will need to generalize the def-n of discrete Markar chains. This requires a few ingredients. Def-n. Let t^{er}le à parameter (i.e. time) and SH)
a random variable for every t. The family of
random variables {SH) | tery is called a stochastic process. Def-n. A stochastic process {S(t) Itery is said to satisfy the Markan property (MP) if for any $P(S(t_{in}) = S_{in}^{*} | S(t_{io}) = S_{io_{1}} \cup S(t_{in-1}) = S_{in-1}^{*} z$ $=$ β $(Slt_{in}) = S_{in} S(t_{in-1}) = S_{in-1}$. Rmk: The property means that the future, Examples: 1. Let (S, P) Le a Markov chain with S=15, Sul Then $P(S(t_{in})=S_{in} \setminus S(t_{io})=S_{io_{1}-1}S(t_{i_{n-1}})=S_{in-1}\setminus Z$ Pha μ C $(S(t_{in}) = S_{in} | S(t_{in-1}) = S_{in-1} | \sum_{k=1}^{n} P_{in-1} i_{k} | h e_{k}$
the μ C (S, p) has μp (here Tz $\frac{1}{2}z_{0}$ is discrete).

2. Consider the stochastic process (SCt); with
te T^{∞} (3), and states S^{∞} (3,1,2,3, ... f (countably many
states), s. t. (S(t) | tery has μ p. Then SCI) is called a continuous-time MC. Examples: (1) $\overline{1} = 20,1,2,...$ $5 = \frac{7}{20}$ $\sqrt{27},5$ (10) z0. $S(t_i) = \begin{cases} S(t_{i-1}) + 1, p^2, h \ S(t_{i-1}) - 1, p^2, h \ S(t_{i-1}) - 1, p^2, h \end{cases}$ (random walk). (2) T_z H_z L_{ν_1} $-2, -1, 0, 1, 2, -1, 5$ 5 $6, 0, 1, -1, 10$ $S(t_i)$ is uniform on $l_0, l_1, ..., l_0, l_1, c$. $P(S(t_{i})=k)=\frac{1}{10}$ for osks10. Assurac, in addition, Scti) = Scti-1) USY
Notice that given Scti) = k for some i, condition
Usy implies Scti) = k for any jez. It follows that ISLET HERY has MP. (3) Same as (2), but instead of condition (*), impose $S(t_{i})$ = $S(t_{i-2})$ (k) Let us show that this stochastic process does not

are MP. Choose
$$
n=2
$$
, $t_0=0$, $t_1=1$ and $t_2=2$ with $S(0)=0$ and $S(1)=1$. Then $P(S(2)=0 | S(0)=0, S(1)=1 \} = 1$

\nSince $S(2)=S(2)=S(0)$. However, $P(S(2)=0 | S(1)=1 \} = 1$

\nUsing $P(S(2)=0) = S(0) = 1$ and $P(S(2)=0) = 1$ and $P(S(2)=0) = 1$

\nwhere $S(2)=0$ and $S(3)=0$ and $S(4)=0$ and $S(5)=0$

\nwhere $n=1$, $n=1$ and $n=1$ and $n=1$ and $n=1$

\nthen $P(S(1,5)=1 | S(0,5)=1 | S(0,3)=2 \} = 1$, but $S(1,5)=1 | S(0,7)=1 | S(0,7)=2 \} = 1$

\nThen $P(S(1,5)=1 | S(0,7)=1 | S(0,7)=2 \} = 1$

\nwhere $s(1,5)=s(1,5)=s(1,5)=s(1,5)=1$

\nwhere $s(1,5)=s(1,5)=s(1,5)=1$

\nwhere $s(2,5)=1$ and $s(3,5)=1$

\nwhere $s(3,5)=1$ and $s(3,5)=1$

\nwhere

Let
$$
p_{ij}(t) = P(S(t+1) = s_j | Stto) \leq f_{ij}
$$
 de the family
of translation probabilities from state s: to sj and
 $P(f) = \binom{p_{ij}(t)}{p_{ij}(t)}$ the corresponding family of transition
matrix.
matrix.
 $l_{i}m_{i}$ are set $P(s) = \sum_{i=1}^{n} \binom{r_{i}}{s_{i}}$ de the matrix
matrix as there are infinitely many states, $P(k)$ is infinite,
side down (1) and to the right (\rightarrow), i.e.
 $P(k) = \begin{pmatrix} p_{i,0}(k) & p_{i,1}(k) & \cdots & p_{i,k} \\ p_{i,0}(k) & p_{i,1}(k) & \cdots & p_{i,k} \\ p_{i,0}(k) & p_{i,1}(k) & \cdots & p_{i,k} \end{pmatrix}$.
 $\frac{p_{i,1}}{p_{i,1}} = \binom{p_{i,0}(k)}{p_{i,0}} = \binom{p_{i,1}(k)}{p_{i,0}} = \binom{p_{i,1}(k)}{p_{i,0}} = \binom{p_{i,0}(k)}{p_{i,0}} = \binom{p_{i,0}(k)}{p_{i,0}}$

 $\epsilon \ll 1$

Ref-n. The vector $Trz(B_0, B_1, B_2, \ldots)$ with all $Imz0$
and $\sum_{n=0}^{n} [B_n = 1]$ is called a stationary $distr - h$ if
$T_{h,z}$ $lim P_{i,h}(t)$ (for any i), Here we assume that the process has no absorbing states.
$lim(1, Let SH) be a Bif Ht-aud-Peath$ process
$lim(1, Let SH) be a Bif Ht-aud-Peath$ process
$lim(1, Let SH) be a Bif Ht-aud-Peath$ process
$lim M_{h,z}$ $lim M_{h,z}$ (for $lim M_{h,z}$) ⁻¹ and $lim M_{h,z}$
$lim M_{h,z}$ $lim M_{h,z}$ (for $lim M_{h,z}$) ⁻¹ and $lim M_{h,z}$
$Proof:$ are start with the equality
$Proof:$ are start with the equality
$lim M_{h,z}$ $lim M_{h,z}$ (for $lim M_{h,z}$) ⁻¹ and $lim M_{h,z}$
$lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$
$lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$
$lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$
$lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$ $lim M_{h,z}$ $lim M$

Finally,
$$
\lim_{t\to\infty} \pi(t) \cdot 0 = \pi \cdot \theta
$$
 must be equal to 0.
\nRecalling that $Q = \begin{pmatrix} -\frac{1}{2} & \lambda_0 & 0 & 0 & \cdots \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \lambda_1 & 0 & \cdots \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, 9
\n $\pi Q = 0$ $\lambda = 0$ $\pi = \begin{pmatrix} \frac{1}{2} & \lambda_0 \pi_0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{$

l

Rink: For the expression in (x) to converge, we need
$1 + \frac{\lambda_0}{J\omega} + \frac{\lambda_1 \lambda_0}{J\omega_0} + \ldots \le \infty$.
For example it is sufficient to have $\frac{\lambda_0}{J\omega} = \frac{1}{\omega_0}$ is convergent, and $\frac{\lambda_0}{J\omega} = \frac{\lambda_1 \lambda_0}{J\omega_0} + \ldots \le 1 + \frac{\alpha_0}{\omega_0} + \ldots \le 1 + \frac{\$

 $1/4$ M/M/I model (M/M/1/20).

Customers are served one at a time, the length of
the line is unbounded. The arrivals are according to a
Poisson process and the service time distr-n is
exponential (with parameters) and w). U^b sing T hm I we get that the fixed prob. vector
is $W = (1-g, g(1-g), g^2(1-g), ...)$ where $g = \frac{\lambda}{\mu}$ and
one needs $g < 1$ for the expression in $(\frac{\nu}{\lambda})$ to
converge. <u>Rive</u> The distriming profile of the factor Examplesia HW, page 23, #1). Suppose that 2 people
arrive for how and it takes an average of 10 minutes
for serve a customor. Find the fixed probability vector For this guine. $\frac{501-n}{\mu \cdot 6}$ $\frac{1}{\mu \cdot 6}$ is an M/M carriers, there $\lambda = 2$ and
 $\frac{1}{\mu \cdot 6}$ (since $\frac{1}{\mu \cdot 6}$ internets) $\frac{2}{\mu \cdot 6}$ (since $\frac{1}{\mu \cdot 6}$ internets) $\frac{2}{\mu \cdot 6}$ (since $\frac{1}{\mu \cdot 6}$ internets) $\frac{2$ μ_z 6 1 since
 μ_{ℓ} (2) μ_W page 28, #2. Find the expected number of custo-

(2) μ_W page 28, #2. Find the expected number of custo-

wers in the *M/MI*, guerre.
 $\frac{60}{\pi}$ in the *M/MI*, guerre.
 $\frac{60}{\pi}$

$$
\frac{Example. [HW_{1}p.24, #3).}{M/M_{1}33} = \text{value}, \text{find } \overrightarrow{N_{1}}' = 5.
$$
\n
$$
\frac{S_{0}I_{-h}}{h} = \frac{1}{2h} \sum_{i} \sum_{j=1}^{n} \
$$

Thm2(Litt2's Formula). Let L be the average number of cuttonars in the system and W the average amount of time (including waiting and service) a between spends in the system. Then
Let us give the idea of the proof. It is based on the code to do. We add the way from a second.
Let us give the idea of the proof. It is based on the code to do. You show how we would have the following identity.
we have the system. Thus we would have the following identity.
(xx) we may take at which $\pm \lambda$. (we have the the system extends to the way $\pm \lambda$. (we have many the system extends by the following the system is done by the following:
Proof (of (xx)): let R(t) be the amount of no the system is done by the two, where W(t) is the number to the automers who entered the system by time to include of customers who entered the system by time to include to the automers who entered the system by the function

To prove Little's formula we use the fallowing
paying rule: each customer pays \$1 per unit time
he/she spends in the system. Then the average amount
of money payed by a customer = average amount of time
spent by a customer the system earons, money; Indeed, the annount, of money karned by the system on the time interval (t, trist) is given by "X(t) it where X(t) is the
Immber of customers in the system at time t, Hence, the rate in question is lim $\frac{12x\text{ s}^2}{t}$ = L (by def-n).
New the result follows from the cost identity. RMX. Let La be the average number of cuestamers Waiting in grunne and Wa the average amount of
time a customer spends in querie, Then $L_{Q} = \lambda \cdot W_{Q}$.
The proof is completely analogous. Exercise. Show the required modification to the paying rule.

EXAMPLE. (HW, page 25, #1).
\nMIMII queue with
$$
\lambda = 2
$$
 and $\mu = 6$. Find L₁W, La₁wa
\nSoI-n. We have shown that $L = \frac{\lambda}{\mu + \lambda} = \frac{2}{6-2} = \frac{1}{2}$ (page 7).
\nUsing Lift 4's f-Ia, we get $W = \frac{1}{\lambda} = \frac{1}{4}$.
\nNext, $W_Q = W - \left(\frac{1}{M}\right) = \frac{1}{4} - \frac{1}{6} = \frac{1}{12}$.
\nUsing Lift 4 - Ia again, $L_Q = \lambda W_Q = \frac{2}{12} = \frac{1}{6}$.
\nGeneral f-Ias for the MIMI model:

lime Spent in the System.

Let The the time a customer spends in the system. If there are in customers at the moment
helshe arrives then I is the sum of the service times of nel cuefonners. Recall that the gervice time in M/M/1 queue has the exponential distr-n. with pdf
 $f_k(x) = \int_0^L e^{-\mu x} x^{2} e^{-\mu x}$ This distribution also has the memorylessness property: $p(T>Set|T>5}) = p(T>1)$, $\forall 5,130.16$ We would like to find the pdf of r.v. To the
amount of time the customer spends in system given there It follows franc (b) that fitted = $(uE)^n$ hent
Exercise. Show that for a collection of i.i.d. random Variables X, --, Xn with pdf flt)= ue-^{14t} lexp. distr-ns
with param. U), one has f_x lt/2 little w here $X = X_1 + ... + X_n$

To obtain the distribution for T 1time the constant
\nspands in the system), we compute:
\n
$$
F_T(t) = \sum_{h=0}^{\infty} \frac{(u+1)^m}{h!} \mu e^{-\mu t} \cdot \pi_h = \sum_{h=0}^{\infty} \frac{(u+1)^n}{h!} \mu e^{-\mu t} \cdot \eta
$$

\n $= \mu e^{-\mu t} (1-\rho) \sum_{h=0}^{\infty} \frac{(\lambda + 1)^n}{h!} = (\lambda + \lambda) e^{(\lambda - \lambda)t} \cdot \pi + \infty$, which
\n $e^{-\lambda t} \cdot \pi$
\nis the exponential distribution
\nis the exponential distribution
\n $\lambda - \mu$. It has the cdf $F_T(t) = P(Tst) = \int_{0}^{\infty} \mu - \lambda \cdot \pi$
\n $= 1 - e^{-\mu - \lambda}t$.
\n $= \lambda - e^{-\mu - \lambda}t$.
\n*kmk*. In particular, $W = IET$ is the formula,
\nhawe established behavior, using LSHSE (T) = $\frac{1}{\mu - \lambda}$, as we
\nhawe establishled before using LSHSE for the MIM 1 system,
\nwhere 3 people arrive each minute (on wavelength and it
\nvalues 15 y.e. to solve a, curvature 1...

(a) find L, L_Q, W₁W_Q.
Answer:
$$
mu = 4u\pi
$$
 hours/min, 50 $L = \frac{\lambda}{\mu - \lambda} = 3$,
 $L_{Q} = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{9}{4}$, $W = \frac{1}{\mu - \lambda} = 1$, $W_{Q} = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{3}{4}$.

(b) give
$$
F_T(t)
$$
 and use it to find $p(T>1)$.
\nAnswer: $F_T(t) = (\mu - \lambda) e^{-(\mu - \lambda)t} = e^{-t}$
\n $P(T=1) = 1 - P(T=1) = 1 - F_T(t) = 1 - \int e^{-t} dt$
\n $= 1 + e^{-t} \Big|_{0}^{0} = 1 + (e^{-t} - 1) = e^{-t} \Big|_{0}^{\text{median}}$
\n(c) $\int_{0}^{\text{median}} e^{-t} dt = -e^{-t} \Big|_{0}^{\text{median}} = 1 - e^{-\text{median}}$
\n $e^{-\text{median}} = 0.5$
\n $\text{median} = -4 \times 0.5$
\n $\text{median} = -4 \times 0.5$
\n $\text{median} = -4 \times 0.5$

$$
\frac{4+5.}{1+5.} \text{ For } M/M/L \text{ queue. (poly 24) Practice problems} \\ \n(a) \int \text{ind } y_n \\ \n(b) \int \text{d} y_n \\ \n(c) \int \frac{dy_n}{\sqrt{n}} \\ \n(d) \int \text{d} y_n \\ \n(e) \int \frac{dy_n}{\sqrt{n}} \\ \n(f) \int \frac{dy_n}{\sqrt{n}} \\ \n(f) \int \frac{dy_n}{\sqrt{n}} \\ \n(f) \int \frac{dy_n}{\sqrt{n}} \\ \n(f) \int \frac{dy_n}{\sqrt{n}} \\ \n(e) \int \frac{dy_n}{\sqrt{n}} \\ \n(f) \int \frac{dy_n}{\sqrt{n}} \\ \n(f) \int \frac{dy_n}{\sqrt{n}} \\ \n(f) \int \frac{dy_n}{\sqrt{n}} \\ \n(g) \int \frac{dy_n}{\sqrt{n}} \\ \n(h) \int \frac{dy_n}{\sqrt{n}} \\ \
$$

$$
\begin{array}{lll}\n\text{(b)} & \lambda z \bar{z} \text{ /hour } \\ \text{(c)} & \lambda z \bar{z} \text{ /hour } \\ \text{(d)} & \lambda z \bar{z} \text{ /hour } \\ \text{(e)} & \lambda z \bar{z} \text{ /hour } \\ \text{(f)} & \lambda z \bar{z} \text{ /hour } \\ \text{(g)} & \lambda z \bar{z} \text{ /lower } \\ \text{(h)} & \lambda z \bar{z} \text{ /lower } \\ \text{(i)} & \lambda z \bar{z} \text{ /lower } \\ \text{(j)} & \lambda z \bar{z} \text{ /lower } \\ \text{(k)} & \lambda z \bar{z} \text{ /lower } \\ \text{(l)} & \lambda z \bar{z} \text{ /lower } \\ \text{(m)} & \lambda z \bar{z} \text{ /lower } \\ \text{(n)} & \lambda z \bar{z} \text{ /lower } \\ \text{(o)} & \lambda z \bar{z} \text{ /lower } \\ \text{(h)} & \lambda z \bar{z} \text{ /lower } \\ \text{(i)} & \lambda z \bar{z} \text{ /lower } \\ \text{(j)} & \lambda z \bar{z} \text{ /lower } \\ \text{(k)} & \lambda z \bar{z} \text{ /lower } \\ \text{(l)} & \lambda z \bar{z} \text{ /lower } \\ \text{(m)} & \lambda z \bar{z} \text{ /lower } \\ \text{(n)} & \lambda z \bar{z} \text{ /lower } \\ \text{(o)} & \lambda z \bar{z} \text{ /lower } \\ \text{(o)} & \lambda z \bar{z} \text{ /lower } \\ \text{(o)} & \lambda z \bar{z} \text{ /lower } \\ \text{(o)} & \lambda z \bar{z} \text{ /lower } \\ \text{(o)} & \lambda z \bar{z} \text{ /lower } \\ \text{(o)} & \lambda z \bar{z} \text{ /lower } \\ \text{(o)} & \lambda z \bar{z} \text{ /lower } \\ \text{(h)} & \lambda z \bar{z} \text{ /lower } \\ \text{(i)} & \lambda z \bar{z} \text{ /lower } \\ \text{(j)} & \lambda z \bar{z} \text{ /lower } \\ \text{(k)} & \lambda z \bar{z} \text{ /lower } \\ \text{(l)} & \lambda z \bar{z
$$

Example .(100, p.20, #3).	
$M/M/3$ / 3	Queue, find N _i 's.
$Sol-h:$	\n $\sum_{p=1}^{n} \sum_{r=1}^{n} \sum_{r=1}^{n} \sum_{r=1}^{n} s$ \n
$Q = \begin{pmatrix} -\lambda & \lambda & 0 & 0 \\ M & f + \lambda & \lambda & 0 \\ 0 & 2 \mu & -\lambda & \lambda \\ 0 & 0 & 3 \mu & -3 \mu \end{pmatrix}$ \n	
$TQ = 0 \Leftrightarrow \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \sqrt{N_{0} - \lambda M_{1}}$ \n	
$TQ = 0 \Leftrightarrow \int_{0}^{\frac{1}{2}} \sqrt{N_{0} - \lambda M_{2}}$ \n	
$TQ = 0 \Leftrightarrow \int_{0}^{\frac{1}{2}} \sqrt{N_{0} - \lambda M_{1}}$ \n	
$3 \mu \pi_{3} = \lambda \pi_{2}$	
$TI_{1} = \frac{\lambda}{\mu} \pi_{0} \sqrt{N_{2} - \frac{\lambda^{2}}{2}} \pi_{0} = \frac{\mu^{2}}{2} \pi_{0} \sqrt{N_{2} - \frac{\lambda}{2}} \pi_{0} = \frac{\lambda}{2} \pi_{0} \sqrt{\frac{\lambda^{2}}{2}} \pi_{0} = \frac{\lambda}{2} \pi_{0}$ \n	
$TI_{1} = \frac{\lambda}{\mu} \pi_{0} \sqrt{\frac{\lambda^{2}}{2}} + \frac{\lambda^{3}}{2} \sqrt{\frac{\lambda^{2}}{2}} \pi_{0} = \frac{1}{2} \pi_{0} \sqrt{\frac{\lambda^{2}}{2}} \pi_{0} = \frac{1}{2} \pi_{0} = \frac{\lambda}{2} \pi_{0$	

Problem. M1M/213 sydeny,
$$
\lambda = 2, \mu z
$$
.
\n(a) Find p_0, p_1, p_2, p_3 .
\n
$$
\sum_{0}^{3} \sum_{\tau=2}^{2} \sum_{\tau=2}^{2} 3
$$
\nBalaure eq-105. $\int_{(340)}^{3} p_0 z^2 p_3 + 2 p_2$
\n
$$
p_1 z^3 p_0, p_2 z^4 h_0 p_0, p_3 z^2 \frac{1}{4} p_2
$$
\n
$$
p_2 z^4 h_0 p_0, p_3 z^2 \frac{1}{4} p_2
$$
\n
$$
p_0 (1 + 3 + 9) h_0 z^2 \frac{1}{4} p_2
$$
\n
$$
p_0 (1 + 3 + 9) h_0 z^2 \frac{1}{4} p_2
$$
\n
$$
\frac{C_1}{4} p_0 z_1 = 0 \quad p_0 z^4 h_0 z^2
$$
\n
$$
\frac{C_2}{4} p_0 z_1 = 0 \quad p_0 z^4 h_0 z^2
$$
\n
$$
\frac{1}{4} p_0 z_1 = 0 \quad p_0 z^2 h_0 z^2 \frac{124}{61} z^2 h_0 z^2
$$
\n
$$
\frac{1}{4} \left(\frac{1}{2} \alpha_1 \right) M_1 W_2.
$$
\n
$$
L = 0 \quad p_0 z^4 h_0 z^2 h_0 z^2 \frac{124}{61} z^2 h_0 z^2
$$
\n
$$
W_0 z^2 W - \frac{1}{h_0} z^2 \frac{123}{61} z^2 \frac{123}{61} z^2 h_0 z^2
$$
\n
$$
M_0 z^2 W - \frac{1}{h_0} z^2 \frac{123}{61} z^2 h_0 z^2 \frac{10z}{61}
$$
\n
$$
L_1 H_0 z^2 h_0 + 2 p_0 z^2 M_0 z^3 \frac{1256 + 54}{61} z \frac{10z}{61}
$$
\n
$$
L_1 H_0 z^2 h_0 + 2 p_0 z^3 W_0 z^3 \frac{1256 + 54}{
$$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\frac{\partial \mathbf{p}}{\partial \mathbf{p}} = \frac{\partial \mathbf{p}}{\partial \mathbf{p}}$

 $\mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}))$

 $\mathcal{L}^{\text{max}}_{\text{max}}$, where $\mathcal{L}^{\text{max}}_{\text{max}}$

Problem 7, page 24. Suppose a food truck has one
\nStiver and serves on average the person per x minutes.
\nThe arrival rate is
$$
\frac{2}{h+1}
$$
 people per minute, where n is
\nthe number of people in like.
\n(a) Find p.'s.
\n(b) Find 1.
\n $\frac{4}{h+1} \cdot h = \frac{4}{h+1} \cdot \frac{1}{h+1} \cdot \frac$

Notice that
$$
\int p(s)ds = \sum_{n=0}^{\infty} p_n \int s^n z \sum_{n=0}^{\infty} \frac{1}{n!} p_n \cdot s^{n+1}
$$
.

\nIf follows that the functional eq-n we are looking for is $p(s) - p_0 + p_0 \cdot s = 4 \int p(s)ds + s p(s) - 4s \int p(s)ds$ to $\int s^n \cdot 0 = 0$.

\nCheck: the coefficients of s^{n+1} :

\n
$$
\int s^n \cdot 0 = 0
$$
.\n
$$
\int s^{n+1} \cdot n \cdot 7! \cdot p_n \cdot 7! = 4! \cdot \frac{1}{n+1} p_n + p_n - 4! \cdot \frac{1}{n} p_{n-1} \leftarrow 90
$$
\nNext we find the solutional eq-n (32):

\n
$$
p(s) - s p(s) - p_0 \cdot s = (4 - u_s) \int p(s) ds \quad | \cdot (1 - s) \int p(s) - s p_0 \cdot s = 4! \cdot \frac{1}{n+1} p_n \cdot s = 0
$$
\nThus, $p(s) - p_0 \cdot s = (4 - u_s) \int p(s) ds \quad | \cdot (1 - s) \int p(s) - s p_0 \cdot s = 4! \cdot \frac{1}{n+1} p_0 \cdot s = 0$

\n
$$
\int r(s) \cdot \int r(s
$$